Metropolis Integration Schemes for Self-Adjoint Diffusions
نویسندگان
چکیده
We present explicit methods for simulating diffusions whose generator is self-adjoint with respect to a known (but possibly not normalizable) density. These methods exploit this property and combine an optimized Runge-Kutta algorithm with a Metropolis-Hastings Monte-Carlo scheme. The resulting numerical integration scheme is shown to be weakly accurate at finite noise and to gain higher order accuracy in the small noise limit. It also permits to avoid computing explicitly certain terms in the equation, such as the divergence of the mobility tensor, which can be tedious to calculate. Finally, the scheme is shown to be ergodic with respect to the exact equilibrium probability distribution of the diffusion when it exists. These results are illustrated on several examples including a Brownian dynamics simulation of DNA in a solvent. In this example, the proposed scheme is able to accurately compute dynamics at time step sizes that are an order of magnitude (or more) larger than those permitted with commonly used explicit predictor-corrector schemes.
منابع مشابه
Biased Metropolis-heat-bath Algorithm for Fundamental-adjoint Su(2) Lattice Gauge Theory
For SU(2) lattice gauge theory with the fundamental-adjoint action an efficient heat-bath algorithm is not known so that one had to rely on Metropolis simulations supplemented by overrelaxation. Implementing a novel biased Metropolis-heat-bath algorithm for this model, we find improvement factors in the range 1.45 to 2.06 over conventionally optimized Metropolis simulations. If one optimizes fu...
متن کاملOptimal scaling of discrete approximations to Langevin diffusions
We consider the optimal scaling problem for proposal distributions in Hastings-Metropolis algorithms derived from Langevin diffusions. We prove an asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm can be characterised by its overall acceptance rate, independently of the target distribution. The asymptotically optimal acceptance rate is 0.574. We show that...
متن کاملConvergence of Conditional Metropolis-Hastings Samplers, with an Application to Inference for Discretely-Observed Diffusions
We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler. We develop conditions under which this sampler will be geometrically or uniformly ergodic. We apply our results to an algorithm for drawing Bayesian inferences about the entire sample path of a diffusion process, based only upon di...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملComparison of two integration schemes for a micropolar plasticity model
Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 12 شماره
صفحات -
تاریخ انتشار 2014